Sifat Komutatif
2+4= 6
4+2= 6
Jadi, 2 + 4 = 4 + 2
2×4= 8
4×2= 8
Jadi, 2 × 4 = 4 × 2
Sifat seperti ini dinamakan sifat komutatif pada perkalian.
Seperti yang telah kamu ketahui, sifat komutatif disebut juga sifat pertukaran.
Untuk lebih jelasnya, perhatikan penjumlahan berikut:
2+4= 6
4+2= 6
Jadi, 2 + 4 = 4 + 2
Sifat seperti ini dinamakan sifat komutatif pada penjumlahan.
Sekarang, coba perhatikan perkalian berikut:
2×4= 8
4×2= 8
Jadi, 2 × 4 = 4 × 2
Sifat seperti ini dinamakan sifat komutatif pada perkalian.
Apakah sifat komutatif berlaku pada pengurangan dan pembagian?
Perhatikan contoh berikut.
-
2 – 4 = –2 dan 4 – 2 = 2
Jadi, 2 – 4 tidak sama dengan 4 – 2, atau 2 – 4 ≠ 4 – 2. -
2 : 4 = 0,5 dan 4 : 2 = 2
Diperoleh bahwa 2 : 4 tidak sama dengan 4 : 2, atau 2 : 4 ≠ 4 : 2
Jadi, pada pengurangan dan pembagian tidak berlaku sifat komutatif.
Sifat Asosiatif
Perhatikanlah contoh penjumlahan tiga bilangan berikut.
(2 + 3) + 4 = 5 + 4 = 9
2 + (3 + 4) = 2 + 7 = 9
Jadi, (2 + 3) + 4 = 2 + (3 + 4).
Sifat seperti ini dinamakan sifat asosiatif pada penjumlahan.
Sekarang, coba perhatikan contoh perkalian berikut.
(2 × 3) × 4 = 6 × 4 = 24
2 × (3 × 4) = 2 × 12 = 24
Jadi, (2 × 3) × 4 = 2 × (3 × 4).
Sifat ini disebut sifat asosiatif pada perkalian.
Pada penjumlahan dan perkalian tiga bilangan bulat berlaku sifat asosiatif
atau disebut juga sifat pengelompokan.
Perhatikanlah contoh penjumlahan tiga bilangan berikut.
(2 + 3) + 4 = 5 + 4 = 9
2 + (3 + 4) = 2 + 7 = 9
Jadi, (2 + 3) + 4 = 2 + (3 + 4).
Sifat seperti ini dinamakan sifat asosiatif pada penjumlahan.
Sekarang, coba perhatikan contoh perkalian berikut.
(2 × 3) × 4 = 6 × 4 = 24
2 × (3 × 4) = 2 × 12 = 24
Jadi, (2 × 3) × 4 = 2 × (3 × 4).
Sifat ini disebut sifat asosiatif pada perkalian.
Sifat Distributif
Selain sifat komutatif dan sifat asosiatif, terdapat pula sifat distributif.
Contoh 1
Apakah 3 × (4 + 5) = (3 × 4) + (3 × 5)?
Jawab:
3 × (4 + 5) = 3 × 9 = 27
(3 × 4) + (3 × 5) = 12 + 15 = 27
Jadi 3 × (4 + 5) = (3 × 4) + (3 × 5)
Selain sifat komutatif dan sifat asosiatif, terdapat pula sifat distributif.
Sifat distributif disebut juga sifat penyebaran. Untuk lebih memahaminya,
perhatikanlah contoh berikut:
Contoh 1
Apakah 3 × (4 + 5) = (3 × 4) + (3 × 5)?
Jawab:
3 × (4 + 5) = 3 × 9 = 27
(3 × 4) + (3 × 5) = 12 + 15 = 27
Jadi 3 × (4 + 5) = (3 × 4) + (3 × 5)
Contoh 2
Apakah 3 × (4 – 5) = (3 × 4) – (3 × 5)?
Jawab:
3 × (4 – 5) = 3 × (–1) = –3
(3 × 4) – (3 × 5) = 12 – 15 = –3
Jadi, 3 × (4 – 5) = (3 × 4) – (3 × 5)
Apakah 3 × (4 – 5) = (3 × 4) – (3 × 5)?
Jawab:
3 × (4 – 5) = 3 × (–1) = –3
(3 × 4) – (3 × 5) = 12 – 15 = –3
Jadi, 3 × (4 – 5) = (3 × 4) – (3 × 5)
Contoh 1 dan Contoh 2 menunjukkan sifat distributif perkalian terhadap penjumlahan
dan pengurangan.
Kalian juga bisa belajar melalui video yang sudah kami siapkan untuk pembahasan sifat-sifat operasi hitung di channel youtube https://www.youtube.com/channel/UCahmlF3jPDUzjiyHH29t5zQ
Semoga bermanfaat ya.. :)
No comments:
Post a Comment